Triple helix formation by purine-rich oligonucleotides targeted to the human dihydrofolate reductase promoter.
نویسندگان
چکیده
The ability of oligodeoxynucleotides to form specific triple helical structures with critical regulatory sequences in the human dihydrofolate reductase (DHFR) promoter was investigated. A battery of purine-rich oligonucleotides targeted to the two purine.pyrimidine strand biased regions near the DHFR transcription initiation site was developed. The stable triple helical structures formed by binding of the oligonucleotides to the native promoter double helix were dominated by G*G.C triplets, with interspersed C*C.G and A*A.T alignments. Mismatches between the oligonucleotide and the purine-rich strand of the target significantly destabilized third strand binding, and a G*A.T alignment was particularly unfavorable. Formation of a pur.pur.pyr triple helical structure results in a localized limitation of access to the native double helical DNA and produces sequence dependent conformational alterations extending several nucleotides beyond the triplex-duplex boundary. Although they differ only by the insertion of two A.T base pairs, the distal and proximal purine.pyrimidine regions can be targeted individually due to the high degree of sequence specificity of triple helical alignment. Triplex formation overlapping any of three consensus transcriptional regulatory elements and collectively covering 50% of the DHFR core promoter is now possible with this set of oligonucleotides.
منابع مشابه
Inhibition of T7 and T3 RNA polymerase directed transcription elongation in vitro.
A class of oligonucleotides which binds to naturally-occurring duplex DNA sites at physiologic pH to form triple helical structures was used as transcription attenuators in an in vitro transcription assay. Oligonucleotides were designed to form triple helices with a purine-rich, double-stranded target by binding in the major groove in an orientation anti-parallel to the most purine-rich strand ...
متن کاملSequence composition effects on the stabilities of triple helix formation by oligonucleotides containing N7-deoxyguanosine.
A nonnatural nucleoside, 7-(2-deoxy-beta-D-erythro-pento-furanosyl)-guanine (d7G), mimics protonated cytosine and specifically binds GC base pairs within a pyrimidine - purine - pyrimidine triple helix. The differences in association constants (KT) determined by quantitative footprint titration experiments at neutral pH reveal dramatic sequence composition effects on the energetics of triple he...
متن کاملTriplex formation by the human Ha-ras promoter inhibits Sp1 binding and in vitro transcription.
The central role of the ras oncogenes in the pathogenesis of a wide variety of human malignancies is well established. Toward developing specific transcriptional inhibitors of the human Ha-ras oncogene, we have designed oligonucleotides to target a region of the Ha-ras promoter (-8 to -28) which contains two of the three Sp1 binding sites essential for transcriptional activity. Gel mobility ana...
متن کاملExclusion of RNA strands from a purine motif triple helix.
Research concerning oligonucleotide-directed triple helix formation has mainly focused on the binding of DNA oligonucleotides to duplex DNA. The participation of RNA strands in triple helices is also of interest. For the pyrimidine motif (pyrimidine.purine.pyrimidine triplets), systematic substitution of RNA for DNA in one, two, or all three triplex strands has previously been reported. For the...
متن کاملRepair of triple helix directed psoralen adducts in human cells.
Triple helix forming oligonucleotides can direct DNA damaging agents at specific sites in an intact double helix. In our study, triple helix formation was demonstrated in a SV40 based shuttle vector treated with psoralen linked to a 22-mer purine rich oligonucleotide. UVA irradiation caused a covalent linkage of the oligonucleotide through the psoralen to the mutational supF marker gene of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 20 7 شماره
صفحات -
تاریخ انتشار 1992